

March 2018

Aims of the Calculation Policy

- Outline appropriate methods to use to teach clarity and understanding in addition, subtraction, multiplication and division across the primary phase
- Clarify progression in mathematics across Key Stage 1 and Key Stage 2
- Ensure that children learn with understanding using the concrete, pictorial and abstract methods shown, and not just through procedural methods to simply be remembered
- Enable pupils to show their understanding using a variety of methods and explain the reasoning behind their findings

The Aims of the Curriculum

The national curriculum for mathematics aims to ensure that all pupils:

- Become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problem problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- Reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- Can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering solutions

Concrete - Pictorial - Abstract

Concrete - using manipulatives

Pictorial - drawing their own representations of the concrete e.g. number lines, base ten, jottings

Abstract - calculations using numerals and symbols
"Children aged seven to ten years old work in primarily concrete ways and that the abstract notions of mathematics may only be accessible to them through embodiment in practical resources." Jean Piaget (1951)

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model Starting at the bigger number and counting on Regrouping to make 10	Add a two digit number and ones. (Add TO + O) Add two, two digit numbers ($\mathrm{TO}+\mathrm{TO}$) Add a two digit number and tens Add three one digit numbers Using the inverse to find the missing number (Difference)	Column addition with no regrouping. (Numbers up to three digits) Column addition with regrouping. (Numbers up to three digits)	Column method regrouping (up to 4 digits)	Column method regrouping with at least 4 digits, including money and measures	Column method regrouping with several numbers (increasing complexity) including. money, measure and decimals with different decimal points.
Subtraction	Taking away ones Counting back Find the difference Part-Part-Whole model Make 10	Regroup a ten into ten ones. Partitioning to subtract without regrouping Make ten strategy	Column subtraction without regrouping Column subtraction with regrouping Introduce decimal subtraction through context of money.	Column subtraction subtract with up to 4 digits (with and without regrouping)	Column subtraction Subtract with at least 4 digits, including money and measures.	Column Subtraction Subtract with increasingly large and more complex numbers and decimal values.
Multiplication	Doubling Counting in multiples /repeating groups Repeated addition Understanding arrays	Arrays showing commutivity Doubling Counting in multiples of 2, $3,4,5,10$ from 0 Using the inverse	Grid method Expanded short multiplication ($\mathrm{TO} \times \mathrm{O}$) leading to introduction of short multiplication (TO x 0)	Expanded short multiplication (HTO $\times \mathrm{O}$) leading to short multiplication (HTO $\times \mathrm{O}$)	Column Multiplication Up to 4 digits by a 1 or 2 digit number ThHTO $\times 0$ ThHTO x TO Long multiplication for two-digit numbers	Column Multiplication Up to 4 digits by a 1 or 2 digit number ThHTO x TO Long multiplication for two-digit numbers
Division	Sharing objects into groups Division as grouping	Division as sharing and grouping	Division with arrays Division using remainders Introducing Short division (no remainders, no regrouping) Introducing Short division (no remainders, regrouping)	Short division Divide at least 3 digit numbers by 1 digit. (no regrouping) Short division Divide at least 3 digit numbers by 1 digit. (regrouping)	Short Division: Divide numbers up to 4 digits by a 1 digit number (regrouping)	Short Division: Divide numbers up to 4 digits by a 1 digit number (regrouping) Divide numbers up to 4 digits by a two-digit number using the formal written method of short division Long division

Mathematical Vocabulary

Correct terminology	Incorrect Terminology
ones	units
Is equal to (is the same as)	equals
zero	Oh (the letter o)
exchange exchanging regrouping	Stealing borrowing
sharing grouping groups	
calculation equation	Generic term of 'sum' or 'number sentence'
bar model	
known unknown	
whole part	
Key Vocabulary	
Addition:	
Minuend Subtrahend Difference	

(3) ADDITION

Addition Year 1	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part whole model	Use cubes and diennes to add two numbers together either as a group, part-part-whole diagram or as a bar. $10=6+4$	Use pictures to add two numbers together as group or in a bar. 8	$\begin{aligned} & 6+4= \\ & =6+4 \end{aligned}$ Use the part-part whole diagram to move into the abstract.

Starting at the bigger number and counting on	 Start with the larger number and count on the smaller number in one by one to find the answer.	$12+5=17$ Start at the larger number on the number and count on in ones or in one jump to find the answer. A bar model which encourages children to count on rather than count all.	$12+5=17$ Place the larger number in your head and count on the smaller number to find your answer. What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$ Use a blank number line to count on.
Regrouping to make 10 This is an essential skill for column addition later.	$9+3=12$ Start with the bigger number and use the smaller number to make 10. Use ten frames, bead strings counters/cubes or Numicon. $6+5$	Use pictures or a number line. Regroup or partition the smaller number to make 10 Children to fill in a ten frame with pencils, counters or cubes.	$7+4=11$ If I am seven how many more do I need to make 10 ? How many more many more do I add on now? Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

(1) ADDITION

Addition Year 2	Concrete	Pictorial	Abstract
Add a two digit number and ones. Add TO + O	Continue to develop understanding of partitioning and place value. $41+8$	Use part part whole and number line to model. Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8=$ $\begin{array}{r} 1+8=9 \\ 40+9=49 \end{array}$ $(40+9=49$
Add two, two digit numbers TO + TO	$36+25=$ TO + TO using base 10 first before moving onto place value counters. Continue to develop understanding of partitioning and place value.	After practically using the resources, children to represent the base 10 in a place value chart. $36+25=$ Children can draw the counters in a place grid to help them solve additions.	$36+25=$ Children to apply their understanding from their use of concrete and pictorial methods to answer questions using a 36 formal column written method.

		Use a number line to support bridging ten. $72+22=$	
Add a two digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add three one digit numbers	Put the 4 and 6 together to make 10. Add on the 7.	$\begin{aligned} & 00+00+\begin{array}{ll} 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array} \\ & 00 \\ & 00 \\ & 00 \\ & 00 \\ & 00 \\ & 00 \end{aligned}+\begin{aligned} & 00 \\ & 0 \\ & 0 \end{aligned}$ Regroup and draw representation.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/bridge ten then add on the third.

Using the inverse to find the missing number. Difference

साडस

3 ADDITION

Addition Year 3	Concrete	Pictorial	Abstract
Column addition with no regrouping Numbers up to three digits.	Add together the ones first, then the tens.	H T 0 0 000 0000 00 00 0000 3 5 9	$\begin{aligned} & 134 \\ & 225+ \\ & \hline 359 \\ & \hline \end{aligned}$
Column addition with regrouping Numbers up to three digits.	When there are 10 ones in the 1 s column we regroup for 1 ten, when there are 10 tens in the 10 s column we regroup for 1 hundred.	Children to represent the counters in a place value chart circling when they regroup.	$\begin{aligned} & 243 \\ & \frac{368}{611} \\ & \hline 11 \end{aligned}$

Ansior

MathsHUBS

(4)(5)(3)ADDITION

Conceptual variation; different ways to ask children to solve $21+34$

Word problems: In year 3, there are 21 children and in year 4, there are 34 children. How many children in total? $21+34=55$. Prove it	$\begin{aligned} & 21 \\ & +34 \\ & -\overline{21+34}= \\ & -21+34 \end{aligned}$ Calculate the sum of twenty-one and thirty-four.	Missing digit problems:	
$21+34=55$. Prove it			
		10 s	1 s
		() ${ }^{\text {P }}$	(1)
		(-) $)$?
		?	5

(3) SUBTRACTION

Subtraction Year 1	Concrete	Pictorial	Abstract
Taking away ones.	Use physical objects, counters, diennes, cubes etc. to show how objects can be taken away. $6-2=4$	$15-3=12$ Cross out drawn objects to show what has been taken away. $\begin{aligned} & 15-3= \\ & 1 ; y \end{aligned}$	$7-4=3$ $16-9=7$
Counting back.	Move the beads along the bead string as you count backwards in ones. Move objects away from the group, counting backwards	Count back in ones using a number line.	Put 13 in your head, count back 4 . What number are you at?

Find the difference	Compare objects and amounts.	Count on using a number line to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 12 grapes and her sister has 5 . How many more does Hannah have than her sister? Helen has 11 plums and her sister has 3 . Find the difference between the number of plums.
Part Part Whole model.	Link to addition. Use PPW model to model the inverse.	Use pictorial representations to show the part.	Move to using numbers within the part part whole model.

	If 10 is the whole and 6 is one of the parts, what is the other number? $10-6=4$		
Make 10.	$14-9=$ Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5.	Jump back 3 first, then another 4 . Use ten as the stopping point. Children must be encouraged to draw a number line and be able to interpret one.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?

(3) SUBTRACTION

Subtraction Year 2	Concrete	Pictorial	Abstract
Regroup a ten into ten ones.	$20-4=16$ Change a ten into ten ones.	$20-4=$	$20-4=16$
Subtracting without regrouping.	$43-21=22$ Use Dienes to show how to partition the number when subtracting without regrouping. $34-13=21$	Children draw representations of Dienes and cross off.	Children to be supported in their understanding by using a formal column method. $\begin{aligned} & 43-21=22 \\ & 34-13=21 \end{aligned}$

Subtracting TO -TO with regrouping	$42-24=18$ Start with the ones, can I take away 2 from 2 ones easily? No, I need to exchange one of my tens for ten ones. Now I can subtract my ones (remove/cross out cubes from the place value mat). Now look at the tens, can I take away 2 tens from the 3 tens easily? Yes.	$42-24=18$ T 0 $1 \times X(X)$ \vdots \vdots 1 8	$\begin{aligned} & 342 \\ & 24 \\ & \hline 8 \\ & \hline \end{aligned}$
Make ten strategy. Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to the next ten and then the rest.	$93-76=$

MathsHUBS

(3) SUBTRACTION

(4)(5) (6) SUBTRACTION

सारास

(i) MULTIPLICATION

Multiplication Year 1	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling.	Draw pictures to show how to double numbers. Double 4 is 8 Children make representations to show counting in multiples.	Draw pictures to show how to double numbers.
Counting in multiples /repeating groups	Count in multiples supported by concrete objects in equal groups.	Children make representations to show counting in multiples. Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 2,4,6,8,10 \\ 5,10,15,20,24,30 \end{gathered}$

Repeated
addition
(2010

| Understanding |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| arrays |

(2) MULTIPLICATION

| Multiplication
 Year 2 | |
| :--- | :--- | :--- | :--- |
| Arrays
 showing
 commutivity | $2 \times 5=5 \times 2$ |

Doubling	Model doubling using diennes and place value counters. Eg. $26 \times 2=$	Draw pictures and representations to show how to double numbers.	Partition a number and then double each part before recombining it back together/
Counting in multiples of 2, $3,4,5,10$ from 0	Count the groups as children are counting in the multiples. You could use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{gathered} 0,2,4,6,8,10 \\ 0,3,6,9,12,15 \\ 0,5,10,15,20,25,30 \\ 4 \times 3=\square \end{gathered}$

Using the inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$2 \times 4=8$
		-	$4 \times 2=8$
		/4 2	$8 \div 2=4$
		$\times \square=$	$8 \div 4=2$
			$8=2 \times 4$
			$8=4 \times 2$
		\square	$2=8 \div 4$
		-	$4=8 \div 2$
			Show all 8 related fact family sentences.

aing

3 MULTIPLICATION

*MathsHUBS

(44) (6)MULTIPLICATION

		When children start to multiply 3 digit by 3 digit and 4 digit by 2 digit etc., they should be confident with the abstract.	In year 5, children are expected to be able to use long multiplication for two digit numbers. Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. In Year 6, children are expected to multiply multidigit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

Conceptual variation; different ways to ask children to solve 6×23

23	23	23	23	23	23	

$?$

Mai had to swim 23 lengths, 6 times a week.	Find the product of 6 and 23$\begin{aligned} & 6 \times 23= \\ & 5=6 \times 23 \end{aligned}$	What is the calculation? What is the product?		
How many lengths did she swim in one week?		100s	10s	15
			\bigcirc	OOO
With the counters, prove that 6×23	623		-8	-0\%
$=138$	$23 \times 6 \times$		$\begin{aligned} & 88 \\ & 08 \\ & 08 \\ & \hline \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \\ & 000 \\ & \hline \end{aligned}$

C Division

Division Year 1	Concrete	Pictorial	Abstract
Sharing objects into group Division as grouping	Sharing: I have 10 cubes, can you share them equally in 2 groups? Grouping: I have 10 cubes. Can you group them into $2 s$?	Sharing: Sharing: 12 shared between 3 is 4 Grouping:	Sharing: Share 9 buns between three people. $9 \div 3=3$ Grouping: Divide 15 into groups of 5 . How many groups are there?

*MathsHUBS
Ni

(2) DIVISION

Division Year 2	Concrete	Pictorial	Abstract
Division as sharing and grouping	Sharing: $12 \div 3=4$ Grouping: $12 \div 3=4$	Sharing: Bar Model: 20 ? \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	Sharing: $28+7=4$ Divide 28 into 7 groups. How many are in each group? Grouping: Divide 28 into groups of 7 . How many groups are there?

*MathsHUBS
(4i4)

© Division

Division Year 3	Concrete	Pictorial	Abstract
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \mathrm{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$ $28=7 \times 4$ $28=4 \times 7$ $4=28 \div 7$ $7=28 \div 4$

Division
using
remainders

$14 \div 3=$
Divide objects between groups and see how much is left over

There are 3 whole squares, with 1 left over.

Draw dots and group them to divide an amount and clearly show a remainder.

() © () © ()

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.

Complete written divisions and show the remainder using r .

```
    29\div8=3 REMAINDER 5
    \uparrow \uparrow \uparrow
dividend divisor quotient remainder
\(13 \div 4-3\) remainder 1
```

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
' 3 groups of 4 , with 1 left over'

Introducing
Short
division

Grouping
with place
value
counters
(regrouping)

(4) (5) (6) DIVISION

Division Year 4, 5 and 6	Concrete	Pictorial	Abstract
Divide at least 3 digit numbers by 1 digit. (no regrouping) Short Division	Use place value counters to introduce dividing 3 digit numbers using short division. Alongside using the place value counters, children need to record their answer in short division $363 \div 3=$ $363 \div 3=121$ $\begin{array}{r} 121 \\ 3 \longdiv { 3 6 3 } \end{array}$	Encourage the children to record their answer in the short division format.	$\begin{array}{r} 211 \\ 4 \longdiv { 8 4 4 } \\ 321 \\ 2 \longdiv { 6 4 2 } \\ 322 \\ 366 \end{array}$

Divers
Divide at
least 3 digit
numbers by
1 digit.
(regrouping)

Short
Division

*MathsHUBS
Long division using place value counters $2544 \div 12$

1000s	100s	10s	15
- θ	-000	0000	OOOO

We can't group 2 thousands into groups of 12 so will exchange them.

1000s	100s	10s	1 s		02
		-000	(ᄌ)ర1	We can group 24 hundreds into groups of 12 which leaves with 1 hundred.	$\begin{gathered} 1 2 \longdiv { 2 5 4 4 } \\ \frac{24 \mid}{1} \end{gathered}$

1000s	100s	10s	1s	After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12 , which leaves 2 tens.	
	-0.0.		-(\%)		
	\%ow	0			
	\%0.0.0				

1000s	100s	10s	1s

After exchanging the 2 tens, we $1 2 \longdiv { 2 5 4 4 }$
have 24 ones. We can group 24 ones into 2 group of 12 , which leaves no remainder.

Conceptual variation; different ways to ask children to solve $615 \div 5$

I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?
$5 \longdiv { 6 1 5 }$
$615 \div 5=$
fld=615 $\div 5$

What is the calculation?
What is the answer?

